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Abstract :  In this study, we defined the Faltung type Volterra integral equation and the Faltung type Volterra integro-differential 

equation in the sense of multiplicative calculus. The solutions of the Faltung type multiplicative Volterra integral equation and the 

Faltung type multiplicative Volterra integro-differential equation of the first kind are determined by using the multiplicative 

Sumudu transform. The approach for solving these equations using the multiplicative Sumudu transform is explained, with 

several examples that illustrate the process. 
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I. INTRODUCTION  AND PRELIMINARIES 

The non-Newtonian calculus, which was presented by Grossman and Katz [13], is a new structure made up of the branches of 

the geometric, bigeometric, harmonic, biharmonic, quadratic, and biquadratic calculus. It has numerous applications in science, 

engineering, and mathematics. Among the topics studied are interest rates, biology, blood viscosity, the theory of economic 

elasticity, including image processing and artificial intelligence, computer science, differential equations and functional analysis. A 

new kind of derivative and integral was established by Grossman and Katz [13] by replacing addition and subtraction with 

multiplication and division. Stanley [23] dubbed this new branch of calculus, which was established in this manner, multiplicative 

calculus. Multiplicative calculus offers new vantage points for use in the sciences and engineering. Aniszewska [5] used the 

multiplicative version of the Runge-Kutta method for solving multiplicative differential equations. Bashirov, Mısırlı and Özyapıcı 

[7] demonstrated some applications and usefulness of multiplicative calculus for the attention of researchers in the branch of 

analysis. Bhat et al. [9] defined multiplicative the Fourier transform and found the solution of multiplicative differential equations 

by applying multiplicative Fourier transform. Bhat et al. [10] defined the multiplicative Sumudu transform and solved some 

multiplicative differential equations by using multiplicative Sumudu transform. Güngör and Durmaz [16] defined multiplicative 

Volterra integral equations and find the solution of these equations by using successive approximation method. Also, they 

investigated the relationship of the multiplicative integral equations with the multiplicative differential equations. For more details 

about non-Newtonian calculus, see in [8, 11-16, 21, 22, 25, 26].   

  The integral transforms have recently been the focus of the studies, because the integral transforms provide simple and 

minimal computations for solving complicated problems in engineering and science. The Laplace transform is the most widely used 

of several integral transforms used to solve integral equations. Asiru [6] applied the Sumudu transform to solve integral equations 

of the convolution (Faltung) type. Song and Kim [27] examined convolution type Volterra integral equations by utilizing the Elzaki 

transform. Aggarwal et al. [1-4] used Aboodh, Kamal, Mahgoub and Shehu transformations to solve linear Volterra integral 

equations with an integral in the form of Faltung.  Güngör [17, 18] used Kaharrat-Toma and Kashuri-Fundo transforms to solve 

convolution type linear Volterra integral equations. Mansour et al. [20] revealed how to use the SEE transform to solve Faltung 

type Volterra integro-differential equation of the first kind. For relevant terminology on integral equations, the reader should 

consult [19, 24].  

In this work, the notion of multiplicative integral is used to define the Faltung type multiplicative Volterra integral equation and 

the Faltung type multiplicative Volterra integro-differential equation. The multiplicative Sumudu transform is used to find the exact 

solution of first and second kind Faltung type multiplicative Volterra integral equation and also Faltung type multiplicative Volterra 

integro-differential equation of first kind. The method of solving these equations using the multiplicative Sumudu transform is 

described, along with a few examples. Moreover, the multiplicative Sumudu transform is used to examine the solution of 

multiplicative linear differential equations with initial conditions, by transforming them into multiplicative Volterra integral 

equations. 
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Now, we will provide some essential details: 

Definition 1. [7] Let 𝑔 be a function whose domain is ℝ the set of real numbers and whose range is a subset of ℝ. The 

multiplicative derivative of the 𝑔 at 𝑡 is defined as the limit 

𝑑∗𝑔(𝑡)

𝑑𝑡
= 𝑔∗(𝑡) = lim

ℎ→0
(

𝑔(𝑡 + ℎ)

𝑔(𝑡)
)

1

ℎ

. 

 

Briefly, the limit is also called ∗-derivative of  𝑔 at 𝑡. If  𝑔 is a positive function on an open set 𝐴 ⊆ ℝ and its classical derivative 

𝑔′(𝑡) exists, then its multiplicative derivative also exists and 

𝑔∗(𝑡) = 𝑒
[

𝑔′(𝑡)

𝑔(𝑡)
]

= 𝑒(ln∘𝑔)′(𝑡) 

where  ln ∘ 𝑔(𝑡) = ln𝑔(𝑡). Moreover, if 𝑔 is multiplicative differentiable and 𝑔∗(𝑡) ≠ 0, then its classical derivative exists and 

𝑔′(𝑡) = 𝑔(𝑡) ln 𝑔∗(𝑡). If 𝑛-th derivative 𝑔(𝑛)(𝑡) exists, then its 𝑛-th multiplicative derivative 𝑔∗(𝑛)(𝑡)  also exists and 𝑔∗(𝑛)(𝑡) =

𝑒(ln∘𝑔)(𝑛)(𝑡), 𝑛 = 0,1,2, …  . 
 

Definition 2. [23] Let 𝑔 be a positive function and continuous on the interval [𝑎, 𝑏], then it is multiplicative integrable or briefly ∗-

integrable on [𝑎, 𝑏] and  

∗ ∫ 𝑔(𝑡)𝑑𝑡
𝑏

𝑎

= 𝑒∫ ln(𝑔(𝑡))𝑑𝑡
𝑏

𝑎 . 

 

Theorem 1. [7] If 𝑔 and ℎ are integrable functions on [𝑎, 𝑏] in the sense of multiplicative, then 

(1) ∗ ∫ (𝑔(𝑡)𝜆)
𝑑𝑡𝑏

𝑎
= (∗ ∫ 𝑔(𝑡)𝑑𝑡𝑏

𝑎
)

𝜆

  

(2)  ∗ ∫ (𝑔(𝑡)ℎ(𝑡))
𝑑𝑡𝑏

𝑎
=∗ ∫ 𝑔(𝑡)𝑑𝑡𝑏

𝑎
∗ ∫ ℎ(𝑡)𝑑𝑡𝑏

𝑎
 

(3)  ∗ ∫ (
𝑔(𝑡)

ℎ(𝑡)
)

𝑑𝑡𝑏

𝑎
=

∗∫ 𝑔(𝑡)𝑑𝑡𝑏
𝑎

∗∫ ℎ(𝑡)𝑑𝑡𝑏
𝑎

 

(4)  ∗ ∫ 𝑔(𝑡)𝑑𝑡𝑏

𝑎
=∗ ∫ 𝑔(𝑡)𝑑𝑡𝑐

𝑎
∗ ∫ 𝑔(𝑡)𝑑𝑡𝑏

𝑐
 

where 𝜆 ∈ ℝ  and 𝑎 ≤ 𝑐 ≤ 𝑏. 

 

Definition 3. [10] Let 𝑓(𝑡) be a positive definite function given on interval [0, ∞). Then, multiplicative Sumudu transform of 

𝑓(𝑡) is defined as 

𝒮𝑚[𝑓(𝑡)] = 𝐹𝑚(𝑢) =   (∗ ∫  
∞

0

𝑓(𝑡)𝑒
−

𝑡
𝑢

𝑑𝑡

)

1

𝑢

=∗ ∫  
∞

0

𝑓(𝑡)
1

𝑢
𝑒

−
𝑡
𝑢

𝑑𝑡

= 𝑒
1

𝑢
∫  

∞
0 𝑒

−
𝑡
𝑢 ln𝑓(𝑡)𝑑𝑡 = 𝑒𝒮[ln 𝑓(𝑡)] 

Some functions' multiplicative Sumudu transforms are as follows: 

 

𝑓(𝑡) 𝒮𝑚[𝑓(𝑡)] = 𝐹𝑚(𝑢) 

1 1 

𝑒𝑡 𝑒𝑢 

𝑒𝑡𝑛
 𝑒𝑛!𝑢𝑛

 

𝑒𝑒𝑎𝑡
 𝑒

1

1−𝑎𝑢 

𝑒sin (𝑎𝑡) 𝑒
𝑎𝑢

1+𝑎2𝑢2 

𝑒cos (𝑎𝑡) 𝑒
1

1+𝑎2𝑢2 

𝑒sinh (𝑎𝑡) 𝑒
𝑎𝑢

1−𝑎2𝑢2 

𝑒cos (𝑎𝑡) 𝑒
1

1−𝑎2𝑢2 

 

Theorem 2. [10] Multiplicative Sumudu transform is multiplicatively linear. In other words, if 𝑓₁ and 𝑓₂ are two given functions 

which have multiplicative Sumudu transform exist, then 

𝒮𝑚[𝑓1
𝜆1𝑓2

𝜆2] = 𝒮𝑚[𝑓1]𝜆1𝒮𝑚[𝑓2]𝜆2 

where 𝜆₁, 𝜆₂ are arbitrary exponents. 

Definition 4. [10] If 𝐹𝑚(𝑢) is the multiplicative Sumudu transform of the function 𝑓, i.e. 𝒮𝑚[𝑓(𝑡)] = 𝐹𝑚(𝑢) then 𝒮𝑚
−1[𝐹𝑚(𝑢)] is 

called as the inverse multiplicative Sumudu transform of 𝐹𝑚. 

 

Theorem 3. (Multiplicative Faltung (Convolution) Property) If 𝒮𝑚
−1[𝐹𝑚(𝑢)] = 𝑓(𝑡) and 𝒮−1[𝐺(𝑢)] = 𝑔(𝑡), then 

𝒮𝑚
−1[𝐹𝑚(𝑢)𝑢𝐺(𝑢)] =∗ ∫  

𝑡

0

𝑓(𝑧)𝑔(𝑡−𝑧)𝑑𝑧
. 

http://www.jetir.org/


© 2022 JETIR December 2022, Volume 9, Issue 12                                                  www.jetir.org (ISSN-2349-5162) 

JETIR2212261 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c425 
 

Proof. Applying multiplicative Sumudu transform to multiplicative integral ∗ ∫  
𝑡

0
𝑓(𝑧)𝑔(𝑡−𝑧)𝑑𝑧

, we find 

𝒮𝑚 [∗ ∫  
𝑡

0

𝑓(𝑧)𝑔(𝑡−𝑧)𝑑𝑧
] = 𝒮𝑚 [𝑒∫  

𝑡
0 𝑔(𝑡−𝑧)ln𝑓(𝑧)𝑑𝑧]

= 𝑒
𝒮[ln 𝑒∫  

𝑡
0 𝑔(𝑡−𝑧)ln𝑓(𝑧)𝑑𝑧]

= 𝑒𝒮[∫  
𝑡

0 𝑔(𝑡−𝑧)ln𝑓(𝑧)𝑑𝑧].

 

From the Faltung (convolution) property of Sumudu transform, we obtain 

𝒮𝑚 [∗ ∫  
𝑡

0

𝑓(𝑧)𝑔(𝑡−𝑧)𝑑𝑧
] = 𝑒𝑢𝒮[ln𝑓(𝑡)]𝒮[𝑔(𝑡)]

= [𝑒𝒮[ln 𝑓(𝑡)]]
𝑢𝒮[𝑔(𝑡)]

= [𝐹𝑚(𝑢)]𝑢𝐺(𝑢).

 

 

Theorem 4. Let 𝑓 is continuous on the interval [0, A] also suppose that there exist positive real numbers 𝑘, 𝛼  and 𝑡0 such that  

|𝑓(𝑡)| ≤ 𝑘𝑒𝑒𝛼𝑡
 for 𝑡 > 𝑡0 and let 𝑓∗ be a piecewise continuous function on the interval [0, A]. Then multiplicative Sumudu 

transform of multiplicative derivative is 

𝒮𝑚[𝑓∗(𝑡)] =
1

𝑓(0)
1

𝑢

𝐹𝑚(𝑢)
1

𝑢 

for 𝑢 <
1

𝛼
. 

Proof. It is obtain that 

𝒮𝑚[𝑓∗(𝑡)] =∗ ∫  
∞

0

𝑓∗(𝑡)
1

𝑢
𝑒

−
𝑡
𝑢

𝑑𝑡

 

                    = 𝑒
1

𝑢
∫  

∞
0 𝑒

−
𝑡
𝑢 ln𝑓∗(𝑡)𝑑𝑡

 

                      = 𝑒
1

𝑢
∫  

∞
0 𝑒

−
𝑡
𝑢 ln𝑒

𝑓′(𝑡)
𝑓(𝑡) 𝑑𝑡

 

                 = 𝑒
1

𝑢
∫  

∞
0

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−
𝑡
𝑢𝑑𝑡

 

                      = 𝑒
lim

𝐴→∞
 
1

𝑢
∫  

𝐴
0

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−𝑡
𝑢 𝑑𝑡

 

 

by using the definition of the multiplicative Sumudu transform. Since 𝑓∗ is a piecewise continuous function on [0, 𝐴] and hence 

𝑓∗ is continuous on every finite interval (0, 𝐴) except possibly at a finite number of points 𝛽0, 𝛽1, … , 𝛽𝑛 in (0, 𝐴). We can write 

the integral as follows by using these points as endpoints of the domain of integration  

1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒−

𝑡

𝑢𝑑𝑡

𝐴

0

=
1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒−

𝑡

𝑢𝑑𝑡

𝛽1

0

+
1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒−

𝑡

𝑢𝑑𝑡

𝛽2

𝛽1

+ ⋯ +
1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒−

𝑡

𝑢𝑑𝑡

𝐴

𝛽𝑛

. 

Using the integration by parts method separately to each term on the right-hand side of this expression, we get  

1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒−

𝑡

𝑢𝑑𝑡

𝐴

0

=
1

𝑢
(𝑒−

𝑡

𝑢 ln 𝑓(𝑡)|
0

𝛽1

+ 𝑒−
𝑡

𝑢 ln 𝑓(𝑡)|
𝛽1

𝛽2

+ ⋯ + 𝑒−
𝑡

𝑢 ln 𝑓(𝑡)|
𝛽𝑛

𝐴

) +
1

𝑢2
(∫ 𝑒−

𝑡

𝑢 ln 𝑓(𝑡) 𝑑𝑡

𝛽1

0

+ ∫ 𝑒−
𝑡

𝑢 ln 𝑓(𝑡) 𝑑𝑡

𝛽2

𝛽1

+ ⋯ + ∫ 𝑒−
𝑡

𝑢 ln 𝑓(𝑡) 𝑑𝑡

𝐴

𝛽𝑛

). 

Since 𝑓(𝑡) is continuous, the above expression can be written as 

1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒−

𝑡
𝑢𝑑𝑡

𝐴

0

=
1

𝑢
𝑒

−𝐴
𝑢⁄ ln 𝑓(𝐴) −

1

𝑢
ln 𝑓(0) +

1

𝑢2 ∫ 𝑒−
𝑡
𝑢ln 𝑓(𝑡) 𝑑𝑡

𝐴

0

. 

Hence we find 

𝑒
1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−
𝑡
𝑢𝑑𝑡

𝐴
0 = 𝑒

1

𝑢
𝑒

−𝐴
𝑢⁄ ln 𝑓(𝐴)−

1

𝑢
ln 𝑓(0)+

1

𝑢2 ∫ 𝑒
−

𝑡
𝑢ln 𝑓(𝑡)𝑑𝑡

𝐴
0 . 

As 𝐴 → ∞,  
1

𝑢
𝑒

−𝐴
𝑢⁄ ln 𝑓(𝐴) → 0 and so 𝑒

1

𝑢
𝑒

−𝐴
𝑢⁄ ln 𝑓(𝐴)

→ 1 for 𝑢 <
1

𝛼
. Therefore, we obtain 

𝒮𝑚[𝑓∗(𝑡)] = 𝑒
−

1

𝑢
ln 𝑓(0)+

1

𝑢2 ∫ 𝑒
−

𝑡
𝑢ln 𝑓(𝑡)𝑑𝑡

∞
0  

                        = (𝑒
1

𝑢
∫ 𝑒

−
𝑡
𝑢ln 𝑓(𝑡)𝑑𝑡

∞
0 )

1

𝑢 1

𝑒ln 𝑓(0)
1

𝑢

 

= 𝐹𝑚(𝑢)
1

𝑢 [
1

𝑓(0)
]

1

𝑢

 

for 𝑢 <
1

𝛼
. This completes the proof. 

 

Corollary 1.  Let 𝑓, 𝑓∗ … 𝑓∗(𝑛−1) be continuous function and  𝑓∗(𝑛) be a piecewise continuous function on the interval 0 ≤ 𝑡 ≤ 𝐴 

also suppose that there is positive real numbers 𝑘, 𝛼  and 𝑡0 such that  

|𝑓(𝑡)| ≤ 𝑘𝑒𝑒𝛼𝑡
, |𝑓∗(𝑡)| ≤ 𝑘𝑒𝑒𝛼𝑡

, … , |𝑓∗(𝑛−1)(𝑡)| ≤ 𝑘𝑒𝑒𝛼𝑡
. 

for 𝑡 > 𝑡0. Then  multiplicative Sumudu transform of  𝑓∗(𝑛)(𝑡) exists and can be calculated by the formula 
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𝒮𝑚[𝑓∗(𝑛)(𝑡)] =
𝐹𝑚(𝑢)(

1

𝑢
)

𝑛

𝑓(0)(
1

𝑢
)

𝑛

𝑓∗(0)(
1

𝑢
)

𝑛−1

… 𝑓∗(𝑛−1)(0)
1

𝑢

 

for 𝑢 <
1

𝛼
. 

 

Theorem 5. If 𝒮𝑚[𝑓(𝑡)] = 𝐹𝑚(𝑢), then 𝒮𝑚[𝑓(𝑡)𝑡] = 𝐹𝑚
∗ (𝑢)𝑢2

𝐹𝑚(𝑢)𝑢. 

Proof. By using the multiplicative Leibniz formula [16], we have 

𝐹𝑚
∗ (𝑢) =

𝑑∗𝐹𝑚(𝑢)

𝑑𝑢
=

𝑑∗

𝑑𝑢
(∗ ∫  

∞

0

𝑓(𝑡)
1

𝑢
𝑒

−
𝑡
𝑢

𝑑𝑡

) 

                                =
𝑑∗

𝑑𝑢
(𝑒

1

𝑢
∫  

∞
0 𝑒

−
𝑡
𝑢 ln𝑓(𝑡)𝑑𝑡) 

                           = 𝑒

𝑑
𝑑𝑢(𝑒

1
𝑢 ∫  

∞
0 𝑒

−
𝑡
𝑢 ln𝑓(𝑡)𝑑𝑡

)

𝑒
1
𝑢 ∫  

∞
0 𝑒

−
𝑡
𝑢 ln𝑓(𝑡)𝑑𝑡

 

                                                    = 𝑒
∫  

∞
0

1

𝑢3𝑒
−𝑡
𝑢 (𝑡ln𝑓(𝑡))𝑑𝑡−∫  

∞
0

1

𝑢2𝑒
−𝑡
𝑢 ln𝑓(𝑡)𝑑𝑡

 

                                                                     = (𝑒
1

𝑢
∫  

∞
0 𝑒

−𝑡
𝑢 (ln𝑓(𝑡)𝑡)𝑑𝑡)

1

𝑢2

(𝑒
1

𝑢
∫  

∞
0 𝑒

−𝑡
𝑢 ln𝑓(𝑡)𝑑𝑡)

−
1

𝑢

 

                     = 𝒮𝑚[𝑓(𝑡)𝑡]
1

𝑢2𝐹𝑚(𝑢)−
1

𝑢. 

If this equation is adjusted, the desired equality 𝒮𝑚[𝑓(𝑡)𝑡] = 𝐹𝑚
∗ (𝑢)𝑢2

𝐹𝑚(𝑢)𝑢 is found. 

 

Definition 5. [16] If the multiplicative integral exists, an equation with an unknown function under one or more signs of 

multiplicative integration is called a multiplicative integral equation (MIE).  The linear multiplicative Volterra integral equation of 

the second kind (LMVIESK) is constructed as 

𝑦(𝑡) = 𝑓(𝑡) ∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡,𝑧)𝑑𝑧
 

where the unknown function 𝑦(𝑡) that will be determined, 𝑘(𝑡, 𝑧) is kernel of the equation. The first kind linear multiplicative 

Volterra integral equation (LMVIEFK) is given as 

𝑓(𝑡) =∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡,𝑧)𝑑𝑧
. 

 

II. FALTUNG TYPE MULTIPLICATIVE VOLTERRA INTEGRAL EQUATIONS 

 

This section presents the concept of Faltung type multiplicative Volterra integral equations and discusses the solutions of these 

equations by use of the multiplicative Sumudu transform. 

We focus on the Faltung (convolution) type kernel 𝑘(𝑡, 𝑧), which is represented by the difference (𝑡 − 𝑧). The Faltung type 

LMVIESK has the form 

𝑦(𝑡) = 𝑓(𝑡) ∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡−𝑧)𝑑𝑧
 

and Faltung type LMVIEFK has the formula  

𝑓(𝑡) =∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡−𝑧)𝑑𝑧
. 

 

Theorem 6. The solution of Faltung type MVIEFK 

𝑓(𝑡) =∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡−𝑧)𝑑𝑧
                                                                                          (1) 

is given by 

𝑦(𝑡) = 𝒮𝑚
−1[𝑌𝑚(𝑢)] = 𝒮𝑚

−1 [𝒮𝑚[𝑓(𝑡)]
1

𝑢𝒮[𝑘(𝑡)]] 

where 𝑘 is the kernel and 𝒮𝑚{𝑦(𝑡)} = 𝑌𝑚(𝑢). 
 

Proof. If we apply the multiplicative Sumudu transformation to either side of (1), we get 

𝒮𝑚[𝑓(𝑡)] = 𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡−𝑧)𝑑𝑧
]. 

Utilizing the multiplicative Faltung theorem of the multiplicative Sumudu transform, we find 

𝒮𝑚[𝑓(𝑡)] = 𝒮𝑚[𝑦(𝑡)]𝑢𝒮[𝑘(𝑡)] 

𝒮𝑚[𝑦(𝑡)] = 𝒮𝑚[𝑓(𝑡)]
1

𝑢𝒮[𝑘(𝑡)]                                                                                    (2) 
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Having applied the inverse multiplicative Sumudu transform on either side of (2), we obtain 

𝑦(𝑡) = 𝒮𝑚
−1 [𝒮𝑚[𝑓(𝑡)]

1

𝑢𝒮[𝑘(𝑡)]  ] 

which represents the desired solution. 

 

Theorem 7. The solution of Faltung type MVIESK 

𝑦(𝑡) = 𝑓(𝑡) ∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡−𝑧)𝑑𝑧
                                                                                        (3) 

is given by 

𝑦(𝑡) = 𝒮𝑚
−1[𝑌𝑚(𝑢)] = 𝒮𝑚

−1 [𝒮𝑚[𝑓(𝑡)]
1+𝑢𝒮[𝑘(𝑡)]

𝑢𝒮[𝑘(𝑡)] ] 

where 𝑘 is the kernel and 𝒮𝑚{𝑦(𝑡)} = 𝑌𝑚(𝑢). 
 

Proof. We can write 

𝒮𝑚[𝑦(𝑡)] = 𝒮𝑚 [𝑓(𝑡) ∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡−𝑧)𝑑𝑧
]

𝒮𝑚[𝑦(𝑡)] = 𝒮𝑚[𝑓(𝑡)]𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡−𝑧)𝑑𝑧
] .

 

by taking multiplicative Sumudu transform to either side of (3). We find the following expression  

𝒮𝑚[𝑦(𝑡)] = 𝒮𝑚[𝑓(𝑡)]𝒮𝑚[𝑦(𝑡)]
1

𝑢𝒮[𝑘(𝑡)] 

 

𝒮𝑚[𝑦(𝑡)] = 𝒮𝑚[𝑓(𝑡)]
1+𝑢𝒮[𝑘(𝑡)]

𝑢𝒮[𝑘(𝑡)]                                                                                          (4) 

by using the multiplicative Faltung theorem of the multiplicative Sumudu transform. Having applied the inverse multiplicative 

Sumudu transform on either side of (4), we obtain the solution as 

𝑦(𝑥) = 𝒮𝑚
−1 [𝒮𝑚[𝑓(𝑡)]

1+𝑢𝒮[𝑘(𝑡)]

𝑢𝒮[𝑘(𝑡)] ]. 

 

 

The approach for solving Faltung type MVIE by using the multiplicative Sumudu transform is explained with the help of a few 

examples that are shown below. 

 

Example 1. Using the multiplicative Sumudu transform method, find the solution of Faltung type LMVIEFK 

𝑒𝑡2
=∗ ∫  

𝑡

0

𝑦(𝑧)𝑒(𝑡−𝑧)𝑑𝑧

. 

Let us write 𝒮𝑚[𝑦(𝑡)] = 𝑌𝑚(𝑢). Apply the multiplicative Sumudu transform 

𝒮𝑚[𝑒𝑡2
] = 𝒮𝑚 [∗ ∫  

𝑡

0

𝑦(𝑧)𝑒(𝑡−𝑧)𝑑𝑧

] 

Now, by implementing Faltung theorem for multiplicative Sumudu transform, it is found as 

𝑒2!𝑢2
= 𝒮𝑚[𝑦(𝑡)]𝑢𝒮[𝑒𝑡]

𝑒2𝑢2
= 𝒮𝑚[𝑦(𝑡)]𝑢⋅

1

1−𝑢

 

Hence, we find 

𝒮𝑚[𝑦(𝑡)] = 𝑌𝑚(𝑢) = 𝑒2𝑢−2𝑢2
 

We obtain by using the inverse multiplicative Sumudu transform as 

𝑦(𝑡) = 𝒮𝑚
−1[𝑒2𝑢−2𝑢2

]

= 𝒮𝑚
−1[𝑒2𝑢]𝒮𝑚

−1[𝑒−2𝑢2
]

= 𝑒2𝑡𝑒−𝑡2
.

 

As a result, we find the solution as 

𝑦(𝑡) = 𝑒2𝑡−𝑡2
. 

 

Example 2. Use the multiplicative Sumudu transform method to solve Faltung type LMVIESK  

𝑦(𝑡) = 𝑒sin 𝑡 ∗ ∫  
𝑡

0

𝑦(𝑧)2cos (𝑡−𝑧)𝑑𝑧
. 

Let us write 𝒮𝑚[𝑦(𝑡)] = 𝑌𝑚(𝑢). Having applied the multiplicative Sumudu transform 

𝒮𝑚[𝑦(𝑡)] = 𝒮𝑚 [𝑒sin 𝑡 ∗ ∫  
𝑡

0

𝑦(𝑧)2cos (𝑡−𝑧)𝑑𝑧
] 

                        = 𝒮𝑚[𝑒sin 𝑡]𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧)2cos (𝑡−𝑧)𝑑𝑧
] 

                         = 𝒮𝑚[𝑒sin 𝑡]𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧)cos (𝑡−𝑧)𝑑𝑧
]

2

. 
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Utilizing Faltung theorem for multiplicative Sumudu transform, we have 

𝑌𝑚(𝑢) = 𝒮𝑚[𝑒sin 𝑡]𝒮𝑚[𝑦(𝑡)]2𝑢𝒮[cos 𝑡] 

= 𝑒
𝑢

1+𝑢2(𝑌𝑚(𝑢))
2𝑢

1

1+𝑢2 . 
Hence, we write 

𝒮𝑚[𝑦(𝑡)] = 𝑌𝑚(𝑢) = 𝑒
𝑢

(𝑢−1)2 

Operating inverse multiplicative Sumudu transform, we obtain 

𝑦(𝑡) = 𝒮𝑚
−1 [𝑒

𝑢

(𝑢−1)2] = 𝒮𝑚
−1 [(𝑒

1

(𝑢−1)2)
𝑢2

(𝑒
1

1−𝑢)
𝑢

] = 𝑒𝑡𝑒𝑡
. 

Consequently, we arrive at the answer as 

𝑦(𝑡) = 𝑒𝑡𝑒𝑡
. 

 

Now, we will give an example of how to solve a linear multiplicative differential equation with initial condition by transforming 

this equation into a multiplicative integral transform with the aid of the multiplicative Sumudu transform. 

 

Example 3.  Take the initial value problem 

{
𝑢∗∗(𝑡)𝑢(𝑡) = 1

𝑢(0) = 𝑒, 𝑢∗(0) = 1
                                                                                          (5) 

This is equivalent to multiplicative Volterra equation 

𝑦(𝑡) = 𝑒−1 ∗ ∫  
𝑡

0

𝑦(𝑧)(𝑧−𝑡)𝑑𝑧
. 

If we apply multiplicative Sumudu transform on either side, we obtain 

𝒮𝑚[𝑦(𝑡)] = 𝒮𝑚 [𝑒−1 ∗ ∫  
𝑡

0

𝑦(𝑧)(𝑧−𝑡)𝑑𝑧
] 

                      = 𝒮𝑚[𝑒−1]𝒮𝑚 [∫  
𝑡

0

𝑦(𝑧)(𝑧−𝑡)𝑑𝑧
] 

Let us write 𝒮𝑚[𝑦(𝑥)] = 𝑌𝑚(𝑢). Considering the multiplicative Faltung theorem for multiplicative Sumudu, we have 

𝑌𝑚(𝑢) = 𝑒−1𝒮𝑚[𝑦(𝑡)]−𝑢𝑆[𝑡]

= 𝑒−1𝑌𝑚(𝑢)−𝑢2  

Hence, we find 

𝒮𝑚[𝑦(𝑡)] = 𝑌𝑚(𝑢) = 𝑒
−

1

𝑢2+1 

Then having applied the inverse multiplicative Sumudu transform, we get 

𝑦(𝑡) = 𝒮𝑚
−1 [𝑒

−
1

𝑢2+1]

= 𝒮𝑚
−1 [𝑒

1

𝑢2+1]
−1

= 𝑒−cos 𝑡

 

Consequently, we have the solution as  

𝑦(𝑡) = 𝑒−cos 𝑡 

Since equation (5) is equivalent to the second-order differential equation 

𝑢′′(𝑡)𝑢(𝑡) − (𝑢′(𝑡))
2

+ (𝑢(𝑡))2ln𝑢(𝑡) = 0, 𝑢(0) = 𝑒, 𝑢′(0) = 0 

its solution is also 𝑢(𝑡) = 𝑒− cos 𝑡 . 
 

 

 

III. FALTUNG TYPE MULTIPLICATIVE VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS  

This section introduces the idea of multiplicative Volterra integro-differential equations, and we deal with the solution of Faltung 

type multiplicative Volterra integro-differential equations of the first kind by using the multiplicative Sumudu transform. 

The multiplicative Volterra integro-differential equation is constructed as 

𝑦∗(𝑛)(𝑡) = 𝑓(𝑡) ∗ ∫  
𝑡

0

𝑦(𝑧)𝑘(𝑡,𝑧)𝑑𝑧
 

where 𝑦∗(𝑛)(𝑡) =
𝑑∗(𝑛)𝑦

𝑑𝑡𝑛 .  The first kind of multiplicative Volterra integro-differential equation is defined as  

∗ ∫  
𝑡

0

𝑦(𝑧)𝑘1(𝑡,𝑧)𝑑𝑧
.∗ ∫  

𝑡

0

𝑦∗(𝑛)(𝑧)𝑘2(𝑡,𝑧)𝑑𝑧
= 𝑓(𝑡), 𝑘2(𝑡, 𝑧) ≠ 0 

where initial conditions are prescribed. We will focus on equations where the kernels 𝑘1(𝑡, 𝑧) and 𝑘2(𝑡, 𝑧) are difference kernels, 

i.e., each kernel depends on the difference 𝑡 − 𝑧. Therefore, the Faltung type multiplicative Volterra integro-differential equation of 

the first kind has form 

∗ ∫  
𝑡

0

𝑦(𝑧)𝑘1(𝑡−𝑧)𝑑𝑧
.∗ ∫  

𝑡

0

𝑦∗(𝑛)(𝑧)𝑘2(𝑡−𝑧)𝑑𝑧
= 𝑓(𝑡), 𝑘2(𝑡, 𝑧) ≠ 0 
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Theorem 8. The solution of Faltung type multiplicative Volterra integro-differential equation of the first kind 

∗ ∫  
𝑡

0

𝑦(𝑧)𝑘1(𝑡−𝑧)𝑑𝑧
.∗ ∫  

𝑡

0

𝑦∗(𝑛)(𝑧)𝑘2(𝑡−𝑧)𝑑𝑧
= 𝑓(𝑡), 𝑘2(𝑡, 𝑧) ≠ 0                                               (6) 

is given by 

𝑦(𝑡) = 𝒮𝑚
−1 [(𝑦(0)

𝒮[𝑘2(𝑡)]

𝑢𝑛𝒮[𝑘1(𝑡)]+𝒮[𝑘2(𝑡)]𝑦∗(0)
𝑢𝒮[𝑘2(𝑡)]

𝑢𝑛𝒮[𝑘1(𝑡)]+𝒮[𝑘2(𝑡)] … 𝑦∗(𝑛−1)(0)
𝑢𝑛−1𝒮[𝑘2(𝑡)]

𝑢𝑛𝒮[𝑘1(𝑡)]+𝒮[𝑘2(𝑡)]) (𝒮𝑚[𝑓(𝑡)])
𝑢𝑛−1

𝑢𝑛𝒮[𝑘1(𝑡)]+𝒮[𝑘2(𝑡)]         ] 

where 𝑢𝑛𝒮[𝑘1(𝑡)] + 𝒮[𝑘2(𝑡)] ≠ 0. 

 

Proof. Taking multiplicative Sumudu transformation of either side of (6) gives 

𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧)𝑘1(𝑡−𝑧)𝑑𝑧
] . 𝒮𝑚 [∗ ∫  

𝑡

0

𝑦∗(𝑛)(𝑧)𝑘2(𝑡−𝑧)𝑑𝑧
] = 𝒮𝑚[𝑓(𝑡)]. 

Utilizing Faltung theorem for multiplicative Sumudu transform, we have 

𝒮𝑚[𝑦(𝑡)]𝑢𝒮[𝑘1(𝑡)]. 𝒮𝑚[𝑦∗(𝑛)(𝑡)]𝑢𝒮[𝑘2(𝑡)] = 𝒮𝑚[𝑓(𝑡)]. 
From the property of multiplicative Sumudu transform of multiplicative derivatives of functions, we find 

𝒮𝑚[𝑦(𝑡)]𝑢𝒮[𝑘1(𝑡)]. (
𝑆𝑚[𝑦(𝑡)](

1

𝑢
)

𝑛

𝑦(0)(
1

𝑢
)

𝑛

𝑦∗(0)(
1

𝑢
)

𝑛−1

… 𝑦∗(𝑛−1)(0)
1

𝑢

)

𝑢𝒮[𝑘2(𝑡)]

= 𝒮𝑚[𝑓(𝑡)] 

𝒮𝑚[𝑦(𝑡)]𝑢𝒮[𝑘1(𝑡)].
𝑆𝑚[𝑦(𝑡)]

𝒮[𝑘2(𝑡)]

𝑢𝑛−1

𝑦(0)
𝒮[𝑘2(𝑡)]

𝑢𝑛−1 𝑦∗(0)
𝒮[𝑘2(𝑡)]

𝑢𝑛−2 … 𝑦∗(𝑛−1)(0)𝒮[𝑘2(𝑡)]

= 𝒮𝑚[𝑓(𝑡)] 

𝑆𝑚[𝑦(𝑡)]
(

𝑢𝑛𝒮[𝑘1(𝑡)]+𝒮[𝑘2(𝑡)]

𝑢𝑛−1 )
= (𝑦(0)

𝒮[𝑘2(𝑡)]

𝑢𝑛−1 𝑦∗(0)
𝒮[𝑘2(𝑡)]

𝑢𝑛−2 … 𝑦∗(𝑛−1)(0)𝒮[𝑘2(𝑡)]) 𝒮𝑚[𝑓(𝑡)] 

Using the initial conditions provided and solving for 𝑆𝑚[𝑦(𝑡)], we get 

𝑆𝑚[𝑦(𝑡)] = (𝑦(0)
𝒮[𝑘2(𝑡)]

𝑢𝑛𝒮[𝑘1(𝑡)]+𝒮[𝑘2(𝑡)]𝑦∗(0)
𝑢𝒮[𝑘2(𝑡)]

𝑢𝑛𝒮[𝑘1(𝑡)]+𝒮[𝑘2(𝑡)] … 𝑦∗(𝑛−1)(0)
𝑢𝑛−1𝒮[𝑘2(𝑡)]

𝑢𝑛𝒮[𝑘1(𝑡)]+𝒮[𝑘2(𝑡)]) (𝒮𝑚[𝑓(𝑡)])
𝑢𝑛−1

𝑢𝑛𝒮[𝑘1(𝑡)]+𝒮[𝑘2(𝑡)]                 (7)  

provided that 𝑢𝑛𝒮[𝑘1(𝑡)] + 𝒮[𝑘2(𝑡)] ≠ 0. Having applied the inverse multiplicative Sumudu transform of either side of (7), the 

exact solution is readily obtained. 

 

The approach for solving these equations by using the multiplicative Sumudu transform is explained with the help of a few 

examples that are shown below. 

 

Example 4. Use the multiplicative Sumudu transform method to solve Faltung type multiplicative Volterra integro-differential 

equation 

𝑒3𝑡−3sin𝑡 =∗ ∫  
𝑡

0

𝑦(𝑧) (𝑡−𝑧)𝑑𝑧
.∗ ∫  

𝑡

0

𝑦∗(𝑧)(𝑡−𝑧)2𝑑𝑧
 

with 𝑦(0) = 1. 

Let’s taken 𝒮𝑚[𝑦(𝑥)] = 𝑌𝑚(𝑢). Having applied the multiplicative Sumudu transform, we find 

𝒮𝑚[𝑒3𝑡−3𝑠𝑖𝑛𝑡] = 𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧) (𝑡−𝑧)𝑑𝑧
.∗ ∫  

𝑡

0

𝑦∗(𝑧)(𝑡−𝑧)2 𝑑𝑧
] 

𝒮𝑚[𝑒𝑡]3  𝒮𝑚[𝑒𝑠𝑖𝑛𝑡]−3 = 𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧) (𝑡−𝑧)𝑑𝑧
] 𝒮𝑚 [∗ ∫  

𝑡

0

𝑦∗(𝑧)(𝑡−𝑧)2 𝑑𝑧
] 

   𝑒3𝑢  𝑒
−3𝑢

1+𝑢2 = 𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧) (𝑡−𝑧)𝑑𝑧
] 𝒮𝑚 [∗ ∫  

𝑡

0

𝑦∗(𝑧)(𝑡−𝑧)2𝑑𝑧
] 

  𝑒
𝑢3

1+𝑢2 = 𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧) (𝑡−𝑧)𝑑𝑧
] 𝒮𝑚 [∗ ∫  

𝑡

0

𝑦∗(𝑧)(𝑡−𝑧)2 𝑑𝑧
] 

Utilizing Faltung theorem for multiplicative Sumudu transform and the property of multiplicative Sumudu transformation of 

multiplicative derivative of functions, we have 

𝑒
3𝑢3

1+𝑢2 = 𝒮𝑚[𝑦(𝑡)]𝑢𝒮[𝑡]𝒮𝑚[𝑦∗(𝑡)]𝑢𝒮[𝑡2] 

= 𝑌𝑚(𝑢)𝑢2
(

𝑌𝑚(𝑢)
1

𝑢

𝑦(0)
1

𝑢

)

2𝑢3

 

                                                                                              = 𝑌𝑚(𝑢)3𝑢2
. 

Hence, we get  

𝑌𝑚(𝑢) = 𝑒
𝑢

1+𝑢2 .  
 

Implementing the inverse multiplicative Sumudu transform, it is found as  

𝑦(𝑡) = 𝒮𝑚
−1 [𝑒

𝑢

1+𝑢2] = 𝑒sin 𝑡 . 

Consequently, we arrive at the answer as 

𝑦(𝑡) = 𝑒sin 𝑡 . 
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Example 5. Use the multiplicative Sumudu transform method to solve Faltung type multiplicative Volterra integro-differential 

equation 

𝑒1+sin𝑡−cos𝑡 =∗ ∫  
𝑡

0

𝑦(𝑧) cos(𝑡−𝑧)𝑑𝑧
.∗ ∫ 𝑦∗(3)(𝑧)sin(𝑡−𝑧)𝑑𝑧

 
𝑡

0

 

with 𝑦(0) = 𝑒, 𝑦∗(0) = 𝑒, 𝑦∗∗(0) = 𝑒−1. 

Let’s taken 𝒮𝑚[𝑦(𝑥)] = 𝑌𝑚(𝑢). Having applied the multiplicative Sumudu transform, we find 

𝒮𝑚[𝑒1+sin𝑡−cos𝑡] = 𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧) cos(𝑡−𝑧)𝑑𝑧
.∗ ∫ 𝑦∗(3)(𝑧)sin(𝑡−𝑧)𝑑𝑧

 
𝑡

0

] 

𝑒
1+

𝑢

1+𝑢2−
1

1+𝑢2 = 𝒮𝑚 [∗ ∫  
𝑡

0

𝑦(𝑧) cos(𝑡−𝑧)𝑑𝑧
] 𝒮𝑚 [∗ ∫ 𝑦∗(3)(𝑧)sin(𝑡−𝑧)𝑑𝑧

 
𝑡

0

] 

Utilizing Faltung theorem for multiplicative Sumudu transform and the property of multiplicative Sumudu transformation of 

multiplicative derivative of functions, we have 

𝑒
1+

𝑢

1+𝑢2−
1

1+𝑢2 = 𝒮𝑚[𝑦(𝑡)]𝑢𝒮[cos 𝑡]𝒮𝑚[𝑦∗(3)(𝑡)]𝑢𝒮[sin 𝑡] 

                                           = 𝑌𝑚(𝑢)
𝑢

1+𝑢2 (
𝑌𝑚(𝑢)

1

𝑢3

𝑦(0)(
1

𝑢
)

3

𝑦∗(0)(
1

𝑢
)

2

𝑦∗∗(0)(
1

𝑢
)
)

𝑢2

1+𝑢2

 

                                                                                              =
𝑌𝑚(𝑢)

1

𝑢

𝑒
1

𝑢(𝑢2+1)𝑒
1

𝑢2+1𝑒
−

𝑢

𝑢2+1

. 

Hence, we get  

𝑌𝑚(𝑢) = 𝑒
𝑢3+𝑢+1

1+𝑢2 = 𝑒𝑢𝑒
1

1+𝑢2 .  
 

Implementing the inverse multiplicative Sumudu transform, it is found as  

𝑦(𝑡) = 𝒮𝑚
−1 [𝑒𝑢𝑒

1

1+𝑢2] = 𝑒𝑡𝑒cos 𝑡 . 

Consequently, we arrive at the answer as 

𝑦(𝑡) = 𝑒𝑡+cos 𝑡 . 
 

IV. CONCLUSIONS  
 

In this paper, the concept of multiplicative integral is used to define the Faltung type multiplicative Volterra integral equations 

and the Faltung type multiplicative Volterra integro-differential equations. The Faltung type multiplicative Volterra integral 

equation of the first and second kinds, as well as the Faltung type multiplicative Volterra integro-differential equation of the first 

kind, are solved using the multiplicative Sumudu transformation. With the aid of various illustrative examples, the method for 

resolving these equations using the multiplicative Sumudu transform is shown. The given applications show that the accurate 

solutions of these integral equations are achieved with little computing effort and time. Also, a numerical example is given for 

solving multiplicative ordinary differential equations by the multiplicative Sumudu transform after converting them to 

multiplicative Volterra integral equations. So, we see from this example that we can obtain the solutions of some ordinary 

differential equations with the aid of the relation between multiplicative calculus and classic calculus. 

REFERENCES 

[1] Aggarwal, S., Chauhan, R. and Sharma N. 2018. Application of Aboodh transform for solving linear Volterra integro-

differential equations of second kind. Int. J. Res. Adv. Tech., 6(8): 1186-1190. 

[2] Aggarwal, S., Chauhan, R. and Sharma N. 2018. A new application of Kamal transform for solving linear Volterra integral 

equations. Int. J. Lat. Tech. Engg., Magn. &App. Sci., 7(4): 138-140. 
[3] Aggarwal, S., Chauhan, R. and Sharma N. 2018. A new application of Mahgoub transform for solving linear Volterra integral 

equations. Asi. Res., 7(2): 46-48. 
[4] Aggarwal, S., Chauhan, R. and Sharma N. 2019. A new application of Shehu transform for handling Volterra integral 

equations of first kind. International Journal of Research in Advent Technology, 7(4): 439-445. 
[5] Aniszewska, D. 2007. Multiplicative Runge-Kutta Methods. Nonlinear Dyn, 50, 265-272.  
[6] Asiru, M. A. 2001. Sumudu Transform and the Solution of Integral Equations of Convolution Type. International Journal of 

Mathematical Education in Science and Technology, 32(6): 906-910. 

[7] Bashirov, A.E., Mısırlı, E. and Özyapıcı, A. 2008. Multiplicative Calculus and Its Applications. J. Math. Anal. Appl., 337, 36-

48. 

[8] Bashirov, A.E., Mısırlı, E., Tandoğdu, Y. and Özyapıcı, A. 2011. On Modeling with Multiplicative Differential Equations. 

Appl. Math. J. Chinese Univ., 26(4): 425-438. 

[9] Bhat, A.H., Majid, J., Shah, T.R., Wani, I.A. and Jain, R. 2019. Multiplicative Fourier Transform and Its Applications to 

Multiplicative Differential Equations. Journal Of Computer and Mathematical Sciences, 10(2): 375-383. 

[10] Bhat, A.H., Majid, J., Wani I.A. and Jain, R. 2019. Multiplicative Sumudu Transform and Its Applications. JETIR, 6(1): 579-

589. 

[11] Campbell, D.1999. Multiplicative Calculus and Student Projects. Primus, IX (4). 

[12] Erdoğan, M. and Duyar, C. 2018. Non-Newtonian improper integrals. Journal of Science and Arts 1 (42): 49-74. 

[13] Grossman, M. and Katz, R. 1972. Non-Newtonian Calculus. Lee Press, Pigeon Cove Massachussets. 

[14] Güngör, N. 2022. A note on linear non-Newtonian Volterra integral equations, Mathematical Sciences, 16: 373-387. 

[15] Güngör, N. 2020. BG-Volterra integral equations and relationship with BG-Differential Equations. GÜFBED 10(3): 814-

829. 

http://www.jetir.org/


© 2022 JETIR December 2022, Volume 9, Issue 12                                                  www.jetir.org (ISSN-2349-5162) 

JETIR2212261 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c431 
 

[16] Güngör, N. and Durmaz, H. 2020. Multiplicative Volterra integral equations and the relationship between multiplicative 

differential equations. Ikonian Journal of Mathematics, 2(2): 9-25. 

[17] Güngör, N. 2021. Solving Convolution Type Linear Volterra Integral Equations with Kashuri Fundo Transform. Journal of 

Abstract and Computational Mathematics 6(2): 1-7. 

[18] Güngör, N. 2020. Application of Kharrat-Toma Transform for Solving Linear Volterra Integral Equations. Journal of 

Universal Mathematics, 3(2): 137-145. 

[19] Krasnov, M., Kıselev, K. and Makarenko, G. 1971. Problems and Exercises in Integral Equations. Mır Publishers, Moscow. 

[20] Mansour, E.A., Kuffi, E. A. and Mehdi S.A. 2022. Applying SEE transform in solving Faltung type Volterra integro-

differential equation of first kind, 25(5): 1315-1322. 

[21] Mısırlı, E. and Gurefe, Y. 2011. Multiplicative Adams Bashforth-Moulton Methods. Numer Algor, 57, 425-439. 

[22] Rıza, M., Özyapıcı, A. and Mısırlı, E. 2009. Multiplicative Finite Difference Methods. Quarterly of Applied Mathematics, 

LXVII (4) : 745-754. 

[23] Stanley, D. 1999. A Multiplicative Calculus. Primus, IX (4): 310-326. 

[24] Wazwaz, A. M. 2011. Linear and Nonlinear Integral Equations Methods and Applications. Springer Verlag Berlin 

Heidelberg. 

[25] Sağır, B. and Eyüpoğlu, İ. 2022. Some geometric properties of Lebesgue sequence spaces according to geometric calculation 

style. GUFBD / GUJS, 12(2): 395-403. 

[26] Sağır, B. and Erdoğan, F. 2019. On the function sequences and series in the non-Newtonian calculus. Journal of Science and 

Arts, 4 (49): 915-936. 

[27] Song, Y. and Kim, H. 2014. The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform, 

Applied Mathematical Sciences, 8(11): 525-530. 

http://www.jetir.org/

